And so it begins…

Hi!  I’m Conro Sugden (aka Conor), and I’ll start my PhD in the Hamill Lab in October investigating  the mechanisms through which age and disease associated alveolar epithelial matrix changes drive development and progression of pulmonary fibrosis. This isn’t my first time being a part of the Hamill Lab; Dr. Hamill was my supervisor for 2 x 12 week projects during my MRes.

I studied my undergraduate degree in Biochemistry here in Liverpool, taking the chance to complete a sandwich placement at the University of Navarra in Pamplona, Spain (see below). Here I got my first taste of what it was like to be a research student, where I was part of a group developing novel plasmids to analyse Leishmania parasites.

Three Firsts

Three firsts: (Left to right) The first picture I took in Pamplona; My first conference poster; The first image I captured of Leishmania major parasites expressing our pXG-mCherry plasmid (kinetoplasts appear blue after staining with DAPI).

Following my undergraduate degree, I completed an MRes in Clinical Sciences, completing 3 x 12-week projects (2 of these projects, here and here, were supervised by Dr. Hamill!) in the Institute of Ageing and Chronic Disease, and this is where I fell in love with matrix biology. My work in the Hamill Lab so far has involved (with the help of Lee Troughton) using minigene constructs to investigate intron retention with alternative polyadenylation (IRPA) in the LAMA3, and then following up this research testing ways we can manipulate this ratio. The data from these projects has been exciting and encouraging, and I’m glad that I get to carry on being a part of this.

During my time in the Hamill Lab I’ve attended my first Burns night, an awesome ‘Assembly, Dynamics and Organisation of Filaments and Cellular Responses’ workshop at Durham University, and I’ve helped with the ‘Sunscreen Challenge’ at Meet the Scientists and other outreach events.

Time in the Hamill Lab

From my time in the Hamill Lab so far: (Left to right) Project 2 presentation; project 3 poster; Sunscreen Challenge preparation.

I’m in the process of becoming a STEM ambassador, and I’m planning to bring the ‘Sunscreen Challenge’ to my old high school so that I can talk to the students about what it means to be a research student. Alongside my PhD research I’ll continue with the outreach activities, and I’ve also enrolled onto a Spanish language course (can’t let myself forget everything I learned when I was over there – I will be fluent one day!). Recently I wrote for The Biochemist blog about the link between inflammation and fibrosis, you can find that here.

Going forward, I couldn’t be happier to begin my PhD in the Hamill Lab. The atmosphere is great, as are the lab members. The research currently being carried out is extremely exciting, and I can’t wait to get stuck in and make my contribution to the field.

Thanks for reading,

Conro 

 

Advertisements

They grow up so fast – NWCR symposium

Today was the Northwest Cancer Research annual symposium held in the stunning, Harry Potter-esque, Victoria Gallery on the IMG_20130714_180621
University of Liverpool campus.

Lots of excellent, inspiring talks including two of my long-term favourites; actin remodelling and RhoGTPases, and integrin signalling. The notebook is full of the next set of experiments and grant ideas! (Thanks Mark)

There was also a thoroughly impressive poster session, displaying the diverse, excellent cancer research work going on in Liverpool, Bangor and Lancaster.

Included in that  poster session, Lee Troughton and Valentina Barrera

C-fSHW1XoAI6tn2.jpg-largepresented our new splice regulation story in LAMA3 that is beginning to really take off. Unfortunately, I missed the opportunity to grab a photo with Vale so its just Lee on this edition of the obligatory “they grow up so fast”.

Lee moaned extensively about his quads hurting while squatting down to take this picture so I made him pose for 10 more, saying it was out of focus…

I also captured his response to finding out about the unnecessary extras. Totally worth it

20170428_150338

Mini (or squatting) Lee

20170428_150343

 

BBSRC Grant Funded!

My first post and its big news! The Biotechnology and Bioscience Research Council have decided to fund my application “Characterisation of LaNt regulation of basement membrane organisation in wound repair and angiogenesis.” Exciting times!

Below is the summary from the proposal. Please feel free to comment with ideas, suggestions, feedback, collaboration ideas etc.

Characterisation of LaNt regulation of basement membrane organisation in wound repair and angiogenesis In this work I propose to study the LaNt family of proteins which were recently identified and which I believe are important for processes such as wound repair, blood vessel growth and the spread of tumours. Through these studies, a deeper understanding of these processes will be obtained and this, in turn, may lead to identification of new treatment approaches for conditions such as chronic or slow-healing ulcers and cancer.   The different tissues of the body are composed of defined combinations of specialised cell types and a mixture of proteins and sugars outside the cells, termed the extracellular matrix (ECM). Some of the cell types reside in and contribute to the production of this ECM, whereas others cover the outer (epithelial) and inner (endothelial) surfaces of regions of ECM as sheets of cells. Directly beneath these cell sheets, as well as surrounding nerves and muscles, there is an organised region of ECM termed basement membrane (BM). BMs provide the anchorage point for cells and are therefore important for stress resistance and structural integrity. In addition, BMs support the different behavioural requirements of a wide range of cell type at different times, including acting as the road upon which the skin cells migrate to close wounds.   A major component of all BMs is the laminin family of proteins. Laminins assemble into cross shaped molecules that associate with one another to form a network. Formation of this network has been shown to involve a small region at the very end of the short arms of the laminin cross, which is termed a LN domain. The importance of this interaction is exemplified by a number of genetic diseases where specific defects in LN domains impact the laminin network and BM organisation resulting in skin blistering, eye defects, kidney failure or muscular dystrophy. However, despite this knowledge, the ways in which laminin networks form, how network organisation changes during different cellular processes and what drives those changes is yet to be fully understood.   This project will focus on the LaNts which have been demonstrated to play a role in cell attachment and migration and which my preliminary data indicate is likely to be through regulating BM formation. Like the laminins, the LaNt (Laminin N-terminus) also contain a LN domain, this suggests that they can interact directly with laminins and modify the ways in which laminin networks are organised. Importantly, there are also tissue specific differences within the laminin family and these differences are likely to mean that the impact of the LaNts is cell type specific. This may also mean that LaNts play different roles during blood vessel growth or wound repair than during normal tissue function.   In order to characterise the roles of LaNts in BM formation and the impact they have on cell behaviour and tissue function, this project will pursue three aims.

  • In Aim 1, I will use proteins in solution to directly assess the ability of LaNts to interact with laminins and other BM proteins and to determine their impact on network formation.
  • In Aim 2, I will use skin and corneal epithelial cells and blood vessel endothelial cells to study the impact of changing LaNt protein levels on cell behaviour. Specifically, we will determine if the BM deposited by cells changes in response to increasing or decreasing LaNt levels and we will assess cell movement speeds, how strongly they attach and how rapidly they divide on the different substrates.
  • In Aim 3, I will use three dimensional models of skin, eye and of blood vessel growth to study LaNt roles in these more complex tissue models.

Together the data obtained from these studies will dramatically expand what is known about LaNts, about laminin network formation, about BM organisation and ultimately about wound repair, blood vessel growth and tumour progression. In the longer term, this may translate into identification of new strategies for therapy development .